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1. INTRODUCTION

In the historical study of Tan and Shore [1], dynamic responses were predicted
for a single, simply supported, horizontally curved beam subjected to a constant
vertical point force moving at constant speed. In that study, the two governing
fourth order differential equations, originally derived by Vlasov [2] in static
form, were modi®ed to include the span inertia and the transit force. Later,
Huang et al. [3, 4], whose citations include related studies on curved spans, used
discrete numerical analyses to calculate the dynamic responses of simple,
horizontally curved bridges to sprung masses simulating transit vehicles. For the
investigations herein, series solutions to Vlasov's equations of motion are
presented, where those equations are modi®ed to include a constant transit
torque moving at constant speed, simulating the centrifugal loading of a transit
vehicle supported by the curved span. The investigations herein also employ the
results of the companion paper by Snyder and Wilson [5], which presented the
coupled bending and twisting out-of-plane free vibration frequencies and mode
shapes for continuous curved spans over multiple pier supports. Illustrated in the
present study are the critical 3-span curved beam de¯ection and rotation
responses for a 90-degree bend, cast as a function of non-dimensional transit
speed and pier spacing. Near-optimal pier spacings are recommended for
response reduction. In addition, an experimental system is described and
experimental results are shown to complement the theory. These results may be
useful in the ef®cient and dynamically sound design of future transit structures,
±460X/99/190565 � 14 $30.00/0 # 1999 Academic Press

ing to complement results of bridge designers who may employ dynamic
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Figure 1. (a) Plan view and (b) a typical cross-section of the continuous horizontally curved
span showing the co-ordinate system. The transit loadings P and T0 are both located at z�Ry.
®nite element analysis to compute span stresses, including the effects of sprung

transit vehicles.
2. THE MATHEMATICAL MODE

Shown in Figures 1(a) and (b) are the geometry, the co-ordinate system, and
the loadings for the curved beam, which is a uniform, continuous span of
constant horizontal radius R in the xz-plane. The shear center s and the centroid
of the cross-section are assumed to be coincident. This continuous span has a
total included angle yT between the extreme end supports and has N clear
segments between the N� 1 supports. For reference purposes, L is de®ned as the
mean centerline length of the clear spans, where L�RyT/N�Ry0 . The pier
spacing for the ith clear segment is de®ned as fiRy0 where the multipliers fi for
i� l, 2, . . . , N are determined later in the paper.
As shown in Figure 1, the span is loaded with a constant vertical point load P

with its line of action through s. This load traverses the span at constant speed v
and is located at z along the span centerline, where z is the curvilinear co-
ordinate measured to the left from the right end of the span along the span's
centerline. Also located at s and acting along z is the companion transit torque
T0 , which models the twisting of the cross-section due to a vehicle's centrifugal
loading acting in the negative x direction: either directly against the outer wall of
the span, or on the span surface from tire friction in the absence of this
restraining wall.
The governing equations for the vertical motion Z� Z(z, t) and the rotation of

the cross-section b� b(z, t) were originally derived by Vlasov [2], who assumed
elastic action with small strains and who employed the left-handed co-ordinate
system (x, y, z) of Figure 1. The nomenclature for the governing, coupled
equations that follow is generally that used in the companion paper by Snyder

and Wilson [5]:
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in which t is time. The point loadings, characterized by the Kronecker delta, are
P0 and T0 at z� vt, and are zero otherwise. The bending stiffness about the x-
axis is EI, the torsion stiffness for rotation about the z-axis is C�GJ, and the
warping constant for the cross-section is D�EIw . Here, E and G are Young's
modulus and the shear modulus, respectively; I is the second area moment about
the x-axis; J is St Venant's torsion constant [6]; and Iw is the warping factor. As
discussed in reference [6], Iw has a computed, non-zero value for thin-walled
open sections such as I-beams and channels; but is zero for closed sections such
as box beams, most ¯at plates, and all circular sections. In the inertial terms, m
is the span mass per unit length and r� (Ip/A)

1/2 is radius of gyration of the
cross-section in which Ip is the second area moment with respect to the z-axis
and A is the cross-sectional area.
The governing equations are cast in non-dimensional form using three

parameters based on a reference span, which is a single, simply supported
straight beam with bending stiffness EI, length L, and mass per unit length m.
Those three parameters are the fundamental bending frequency p0 (rad/s), the
peak midspan de¯ection Zs under P0 , and the passage frequency o (rad/s) for the
traversing load P0 , which are de®ned respectively by

p0 � p4EI
mL4

� �1=2

, Zs �
P0L

3

48EI
, o � pv

L
: �3�

Further, the non-dimensional system parameters for the curved con®guration are
de®ned as follows. The stiffness and geometric parameters are

�C � C=�EI�, �D � D�EIR2�, f1, f2, . . . ; fN, z � r=R, y0 � L=R � yT=N:

�4�
The time and frequency parameters are

�t � ot, �p � p=p0, O � o=p0 � pv=�Lp0�, �5�
where p represents the free vibration frequencies for the curved con®guration.
The co-ordinate parameters are

�z � z��t� � z=L, �b � b��z,�t� � bR=Zs, �Z � Z��z,�t� � Z=Zs: �6�
The load parameters are

�P � 48d0��zÿ �t=p�, �T � T0
�P=�RP0�, �7�
where d0� 1 at �z��t/p and d0� 0 otherwise.
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With equations (3)±(7), the governing equations (1) and (2) become
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3. SOLUTIONS FOR TRANSIT LOADING

For continuous horizontally curved beams, the general methods for computing
the free vibration frequencies p� pn , with n� 1, 2, . . . , and their corresponding
mode shapes �Wn� �Wn(�z), based on the homogeneous forms of equations (8) and
(9), were derived in general by Snyder and Wilson [5]. In that work, which
employs the present nomenclature, the boundary conditions, the continuity
conditions, and the methodology leading to solutions for p and �Wn are presented
in great detail and thus will not be repeated herein. Using the frequencies and
mode shapes so calculated, solutions to the non-homogeneous forms of
equations (8) and (9), or for non-zero transit point loads, may be found by the
normal mode method with solutions in the forms

�Z �
X1
n�1

Zn
�Wn, �b �

X1
n�1

Yn �Wn, �10�

in which Zn�Zn(�t) and Yn�Yn(�t). The operator notations � � d/d�t and 0� d/d�z
are used with equations (10) to rewrite equations (8) and (9). Each of those
equations is then multiplied by �Wm� �Wm(�z) and each term is then integrated
over the range 0E�zERyT/L. Use is then made of the orthogonal properties of
�Wn , or X�

�Wm
�Wn d�z � 0, for m 6� n,

B0, for m � n,

�
�11�

X�
�Wm

�W 00
n d�z � 0, for m 6� n,

B2, for m � n,

�
�12�

X�
�Wm

�W 0000
n d�z � 0, for m 6� n,

B4, for m � n,

�
�13�

In the above three equations, integration is piecewise over each span segment,
and the summation is for all span segments.
The results lead to the following two coupled second order differential
equations in the single independent variable �t:
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in which the constants are given by

m1 � p4O2B0, m2 � m1z
2,

a11 � �1� �D�B4 ÿ y20 �CB2, a21 � a12 � �DB4 ÿ y20�1� �C�B2,

a22 � �DB4ÿy20 �CB2 � y40B0:

�15�

The following initial conditions at �t� 0 are applied to the solutions of
equations (14), conditions that assure that the continuous span is ¯at and at rest
just before the transit loads are applied:

Zn�0� � _Zn�0� � Yn�0� � _Yn�0� � 0: �16�
Given the coef®cients of equations (15), the mode shapes �Wn , and the transit

torque �T, equations (14) may be solved numerically for a suf®cient number of
mode shapes, typically for n� l, 2, . . . , 6, and with these solutions the time-
varying vertical de¯ection �Z and rotation �b may be calculated from equations

(10) at a material point �z on the span.
4. NEAR-OPTIMAL SPANS

A near-optimal continuous span with N segments, where each segment i has
length fiRy0 , is now de®ned by a set of span multipliers fi , subjected to the
following four constraints.

(1) The extreme ends of the span rest on simple supports.
(2) The overall span length RyT�LN is ®xed, or f1� f2� � � � fN�N.
(3) The span segment lengths are symmetric about the midlength, or

fi� fN�1ÿi . This assumption of symmetry eliminates any directional bias,
so that the moving load (the vehicle) may enter the span from either end,
which is a practical consideration.

(4) As the vertical load traverses the whole con®guration at crawl speed, a
peak vertical de¯ection di occurs under the load at each mid-segment i.
For the near-optimal con®guration, all of the di values are identical, and
each fi is chosen to make this so.

While a span designed with such constraints is the static optimal, it is realized
that this span may not necessarily meet the fourth criterion for v over a range of
elevated speeds, and thus the near-optimal designation was chosen. The
assumption is that that transit loads at elevated speeds on near-optimal spans
will generally result in smaller maximum dynamic responses than for spans of
equal length segments (all fi� 1), other system parameters remaining the same.
Such was the case for the counterpart problem of straight, continuous spans

investigated by Wilson and Barbas [7], whose only difference from the four
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TABLE 1

Span multipliers fi for 0�05E �CE 2, 0E �DE 0�1, and yT� p/2

No. of
spans, N i� 1, N i� 2, Nÿ 1 i� 3, Nÿ 2 i� 4, Nÿ 3 i� 5, Nÿ 4

3 0�967 1�065 0�967 ± ±
4 0�950 1�050 1�050 0�950 ±
5 0�940 1�039 1�041 1�039 0�940
6 0�934 1�032 1�034 1�034 1�032
7 0�929 1�027 1�029 1�029 1�029
8 0�926 1�023 1�026 1�026 1�026
9 0�923 1�020 1�023 1�023 1�023
constraints above was that bending moments replaced de¯ections in constraint (4)
as the selection criteria for fi . However, for both straight and curved spans for
N� 3, 4, . . . , 9, computations showed that the near-optimal span multipliers for
practical cases were always in the range 0�85E fi E 1�2.
Typical numerical results for the span multipliers obeying the four constraints

listed above are shown in Table 1. These results, obtained by Threlfall [8] who
employed a trial and success procedure to satisfy constraint (4) to within 0�01%,
were based on closed form solutions to the static equation counterparts of
equations (8) and (9), as presented by Heins [9]. Imposed were the conditions of
simply supported extreme ends, zero de¯ection at all interior supports, and
continuity of slope and moment across the interior supports. All of the results in
Table 1 are for a curved span with a 90-degree turn, or yT� p/2. For a ®xed N,
ranging from 3 to 9, the corresponding row of multipliers stayed the same to
within 0�1% when the span parameters �C and �D were varied in the practical

design ranges 0�05E �CE2�0 and 0E �DE0�1.
5. DYNAMIC RESPONSES

For the dynamic studies, both numerical and experimental, three span
con®gurations were chosen. All three con®gurations were horizontally curved
¯at steel plates with a mean radius R� 2�04 m and cross-section dimensions of
0�307612�7 mm. The ®rst con®guration served as the reference span: a single,
simply supported curved span with a 30-degree arc, de®ned by the following
parameters

N � 1, �C � 1�6, �D � 0, �T � 0, 1=z � 55�6, yT � p=6: �17�
The second and third con®gurations were both 3-span units with 90-degree
turns: the second with even pier spacing and the third with near-optimal pier
spacing, de®ned by the parameters

N � 3, �C � 1�6, �D � 0, �T � 0, 1=z � 55�6, yT � p=2; �18�

even: f1 � f2 � f3 � 1, near-optimal : f1 � f3 � 0�969, f2 � 1�063:
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The three near-optimal values of fi in the above equation were measured values
(discussed below), and differ only by about 0�2% from the computed values
given in the ®rst row of Table 1.
Using the appropriate parameters of equations (17) and (18), the following

procedure was used to calculate the peak dynamic responses for the three
con®gurations.;

(1) Compute the time history of the de¯ection and rotation responses at
midspan for the simple curved span, de®ned by equations (17). Deduce the
peak values of each as a function of O in the range of zero to one. Use the
®rst six modes and the closed form solutions given in reference [1].
Proceed to the calculations for the two 3-span con®gurations de®ned by
equations (18).

(2) For the even span case, compute the lowest six frequencies �p and
corresponding mode shapes �Wn for n� 1, 2, . . . , 6. Use the methods
described in the companion paper by Snyder and Wilson [5].

(3) For ®xed values of the passage frequency ratio in the range 0�1EOE 0�8,
compute the corresponding constants de®ned by equations (11), (12), (13),
and (15).

(4) For each O, use Mathematica with the adaptive Runge±Kutta procedure
to solve the differential equations (14) for the time histories of Zn and Yn .

(5) For each Y, use these solutions to compute the time histories of the
dynamic responses �Z and �b given by equations (10), located at the
midlength of each of the three span segments. Record the co-ordinate
pairs (O, �Z) and (O, �b) in which �Z and �b are the peak values for a given
time history of response. Truncate all sums after mode six.

(6) Repeat the last ®ve steps for the near-optimal case.

Listed in Table 2 are two sets of numerical results: the lowest six normalized
free vibration frequencies �p� �pi , i� 1, 2, . . . , 6, for each of two 3-span
con®gurations. When the frequencies for like values of i are compared between
the two con®gurations, only small changes in �p are observed. However, despite
these small frequency differences, the differences in the spans' dynamic responses
are relatively large, as demonstrated by the following results.
The computed peak midspan de¯ections �Z as a function of O are shown in

Figures 2(a)±(c) for the even span case, and in Figures 3(a)±(c) for the near-
optimal case. Also shown in these ®gures, for comparison purposes, is the peak
dynamic response curve for the simply supported curved reference span whose

parameters are de®ned by equation (17). This reference con®guration may be

TABLE 2

First six non-dimensional free vibration frequencies �p for the two 3-span con®guration
de®ned by equation (18)

Pier spacing �p1 �p2 �p3 �p4 �p5 �p6

Even 0�964 1�251 1�847 3�963 4�525 5�562
Near-optimal 0�956 1�316 1�780 3�891 4�746 5�412
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Figure 2. Computed and measured values for the peak dynamic de¯ection responses for the
simple curved reference span de®ned by equation (17), and for the 3-span con®guration with even
pier spacings de®ned by equation (18): (a) entrance span l, (b) middle span 2, and (c) exit span 3.
The data are distinguished by: ÐÐ, simple curved span (theory); &, simple curved span (exper-
considered as three identical, simple curved spans end-to-end, which altogether

form a 90� horizontal curve of the same length as the two types of continuous

spans. It is noted that, since the peak midspan static de¯ection of the simple

curved span was calculated to be within 5% of Zs de®ned by equation (3) for of

iment); ± ± ±, even pier spacing (theory); } even pier spacing (experiment).
the straight span counterpart, then �Z is not distinguishable from unity on these
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Figure 3. Computed peak dynamic de¯ection responses for the simple curved reference span,
and for the two 3-span con®gurations: (a) entrance span 1, (b) middle span 2, and (c) exit span 3.
The data are distinguished by: ÐÐ, simple curved span (theory); ± ± ±, even pier spacing
(theory); Ð Ð Ð, near-optimal pier spacing (theory); ~, near-optimal pier spacing (experiment).
®gures. When all of these data are compared at a ®xed O, the most important
observed results are as follows.

(1) The crossover points at which the peak responses of the continuous spans

just reach that of the simple span always occur at �Z1 1�7.
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(2) Span 3 or the exit span is the critical one for both continuous
con®gurations for two reasons: crossover occurs at the lowest value of
O(� 0�62 and 0�65) for spans 3, compared to O (� 0�75 to 0�8) for spans 1
and 2; and the responses are the highest for spans 3 after crossover, as O
approaches 0�8.

(3) For 0EOE 0�5, the peak responses of the near-optimal con®guration are
45 to 50% less that of the simple span counterpart.

(4) For critical spans 3, and for 0EOE 0�8, the peak responses for the near-
optimal con®guration are always less than those for the even
con®guration; see Figure 3(c).

Following the same procedures as in the calculation of �Z, the companion
rotation responses �b, of equation (10) were also calculated and then cast in the
alternate form

b=bs � ��b=bs��Zs=R�: �19�
Here, bs is the static midspan rotation of the simple curved span de®ned by
equation (17), with a load P applied at midlength. bs may be calculated for the
load at crawl speed or directly from the closed form result; equation (32b) of
Tan and Shore [1]. When the results for b/bs were plotted in the same manner as
the responses of Figures 2 and 3, those results were nearly indistinguishable from
the results for �Z in those ®gures. Thus, for all practical purposes, b/bs may
replace �Z in those ®gures; and all of the conclusions for span de¯ection listed

above also apply for span rotation.
6. THE EXPERIMENTAL SYSTEM DESIGN

An experimental system was designed and implemented for the purpose of
validating the theoretical predictions for curved span responses. A schematic
view of a 90-degree continuous span, together with some design details of the
point transit load and the span, are shown in Figure 4. The 30-degree simple
span, not shown, was also implemented. The experimental curved span system,
implemented by Schichtel [10], was a modi®ed version of the experimental
straight span system described in detail by Wilson [11]. For the sake of
completeness, the span design, the transit load, the propulsion system, and the
measuring system are brie¯y described.
The three span con®gurations with the characteristics de®ned by equations

(17) and (18), were ¯at, horizontal steel plates with dimensions such that they
behaved as curved beams. That is, the ratio of the spans' width of cross-section
(0�127 m) to mean radius R (2�04 m) was 0�0622, well within the limit ratio of
0�2 above which ¯at plate dynamics become important, according to Wilson and
Garg [12]. The span con®gurations were simply supported at the extreme ends
and were held down with hooks at each support, as shown in Figure 4. The
spans were prebent so that they were ¯at and horizontal, or very nearly so,
under the added mass of the brass rods hung under the spans. With this added

mass, the spans' fundamental frequencies p1 were measured: 3�65 Hz (22�9 rad/s)
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Figure 4 The experimental system showing: (a) overall view of the 90-degree curve; (b) the
for both the simple span and for the even span con®gurations; and 3�68 Hz for
the near-optimal span.
The transit load was a single-wheeled, 1-kg bogie that maintained good span

contact with the help of the prebent steel leaf spring between the bogie and its
propulsion motor that gave an added spring load of about 4 N. The propulsion
motor was a specially designed linear induction motor that achieved constant
speed v on the entrance runway prior to entering the test span. The motor had a
120-Hz voltage supply, and the voltage was preset in the range of 50 to 280 V to
achieve the desired constant speed in the range of 1�2 to 7 m/s. This speed was
measured for each test run by recording electronically the time of arrival of the
motor as it tripped each consecutive microswitch in passing; see Figure 4. The
experimental system was designed to achieve a maximum transit frequency ratio
of 0�9, which is computed from equation (5) with p01 p1, or: O� pv/

point load model; and (c) the span detail. Dimensions in mm.
(Lp0)� p(7)/(1�07)(22�9)1 0�9. In reality, values of O only up to 0�8 could be
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achieved, since higher values caused the bogie to bounce a little on the test
spans.
In addition to measuring the speed of the transit load, the time history of each

midspan de¯ection Z and of each midspan cross-section rotation b were also
recorded. Non-intrusive LVDT's (linear variable differential transformers) were
used to measure Z; and differential vertical midspan displacements at the inner
and outer radius, divided by the cross-section width, were used to measure b.
Auxiliary equipment used for these measurements, and also for measurements of
the bogie velocity (signals from the tripped microswitches) were signal

conditioners and a multiple channel strip chart recorder.
7. DISCUSSION

Consider ®rst the experimental results. For the simple curved span, the peak
measured responses are shown as the box points in Figure 2(a), all normalized
by the static de¯ection for the bogie placed at midspan. That same reference
de¯ection was used to normalize the data for the two 3-span con®gurations. For
the simple curved span, the experimental data follow the trend of the predicted
results, but are consistently depressed from the predicted results by about 10%.
This same trend is also apparent for the continuous spans: data in Figures 2(a)±
(c) for the continuous, even spans, and data in Figures 3(a)±(c) for the near-
optimal spans. Although system damping may account for a part of the
depressed measured responses, (span damping was measured to be about 2% of
critical), the main reason that the measured responses are lower than the
predicted ones, especially as O approaches the 0�8 for the continuous
con®gurations, is the inertia effect of the 1 kg transit mass. Inertia effects are
ampli®ed at increasing transit speed. It is recalled that the predictions are all
based on a constant, inertialess, moving force, a condition that is dif®cult to
achieve experimentally with a moving mass, even though this mass is only about
one-seventh the mass of any single span.
Not presented here, for the sake of brevity, are the experimental results for

span rotations. Again, and as for the theory, the measured responses for b/bs
were essentially the same as the corresponding measured responses for �Z of
Figures 2 and 3. Further, in the experimental system, bs 1 0�02 rad, which
compares favorably with the theoretical value computed from the theory of Tan
and Shore [1], equation (32b), provided that the typographical error in their
equation (12) is corrected.
Consider the analysis and its application to design. Because the governing

equations and the computed peak dynamic responses were cast in terms of non-
dimensional system parameters, the results of this analysis may be especially
useful in the ef®cient design of curved, elevated guideway structures for future
rapid transit systems. For instance, consider this example. The preliminary
design of a closed box guideway similar to that of Figure 1 is based on a simple
straight span, 30 m in length, which accommodates the static loading of a
vehicle that is much shorter than 30 m and has a mass much less than that of the

span. The fundamental frequency of this simple span, computed from equation
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(3), is p0� 18�85 rad/s or 3 Hz. It is proposed to use this preliminary design as a
basis for the following curved span that has nearly the same system parameters
as those of equation (18): a uniform, 3-span guideway with a 90-degree turn; a
near-optimal pier spacing; and a mean arc length between piers of L� 30 m
(R� 57�3 m). One key question concerning the dynamic design of the curved
span counterpart is: what would be the maximum allowable speed of the vehicle,
assuming suf®cient side restraints while traversing the curve?
To answer this, refer to the peak response curves for the near-optimal spans

shown in Figures 3. Choose �Z as unity and read the corresponding highest value
of the transit frequency ratio on these three curves, or O1 0�5 from Figures 3(b)
and (d). From the de®nition of O, equation (5), the critical or maximum vehicle

speed for the curved span is v� 0�5Lp0/p� 90 m/s.
8. CONCLUSIONS

Three main conclusions of this study are: (1) for the illustrations of 3-span
continuous con®gurations with 90-degree curves and zero warping (closed cross-
sections), the critical (or exit span) dynamic responses for near-optimal pier
spacings are less than those for even pier spacings, results that are analogous to
the cases of straight continuous spans reported by Wilson and Barbas [7]; (2)
although the effects of transit torque �T on continuous spans are not illustrated
herein, and this may bear future investigation, it is expected that �T will affect the
critical responses only as O approaches unity, as was the case reported by
Wilson et al. [13] for simple spans with parameters close to those of equations
(17); and (3) the experimental results do complement the predicted responses and
give credibility to Vlasov's mathematical model for curved spans in which a
constant moving force (no inertial effects of the transit load) gives a high

estimate of the critical dynamic responses.
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